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Abstract

Antipsychotic drugs (APDs) can have a profound effect on the human body that extends well beyond our
understanding of their neuropsychopharmacology. Some of these effects manifest themselves in peripheral
blood lymphocytes, and in some cases, particularly in clozapine treatment, result in serious complications.
To better understand the molecular biology of APD action in lymphocytes, we investigated the influence of
chlorpromazine, haloperidol and clozapine in vitro, by microarray-based gene and microRNA (miRNA)
expression analysis. JM-Jurkat T-lymphocytes were cultured in the presence of the APDs or vehicle alone over
2wk to model the early effects of APDs on expression. Interestingly both haloperidol and clozapine appear to
regulate the expression of a large number of genes. Functional analysis of APD-associated differential expression
revealed changes in genes related to oxidative stress, metabolic disease and surprisingly also implicated
pathways and biological processes associated with neurological disease consistent with current understanding
of the activity of APDs. We also identified miRNA–mRNA interaction associated with metabolic pathways
and cell death/survival, all which could have relevance to known side effects of APDs. These results indicate
that APDs have a significant effect on expression in peripheral tissue that relate to both known mechanisms
as well as poorly characterized side effects.
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Introduction

The molecular mechanisms underlying the therapeutic
activity and side effects of antipsychotic drugs (APD)
are not well understood. It is generally accepted that
they are mediated through target receptors in the brain,
which induce intracellular signaling cascades necessary
for regulating biological pathways that are dysfunctional
in schizophrenia (Sedvall et al., 1986). Owing to the
strong affinity of APDs for the dopamine D2 receptors,
these are thought to be a principle therapeutic target
(Seeman, 2010), although many other neurotransmitter
systems are also implicated and it is unlikely that schizo-
phrenia is simply the result of imbalance in one or even
many different signaling systems (Miyamoto et al., 2005;
Miller, 2012).

There are two major classes of APD: first generation
(typicals) such as chlorpromazine and haloperidol,
which generally show strong antagonistic activity at the

D2 dopamine receptors and second generation (atypicals)
such as clozapine, which have a broader range of affinity
for other neurotransmitter systems including serotonergic
signaling (Schotte et al., 1996; Miyamoto et al., 2005;
Carpenter and Koenig, 2008). APDs can produce a wide
array of side effects, most likely due to excessive or off-
target effects at many different receptors. Some side
effects impact on the central nervous system (CNS) such
as extra-pyramidal symptoms (EPS). It has been argued
that weaker, transient binding of atypicals at D2 dopa-
mine receptors reduces the risk of EPS that are associated
with stronger binding by typical APDs. Other side effects
manifest in peripheral tissues and whether they originate
from APD action in the CNS or peripheral tissue is
unknown. The broader receptor binding profiles of
atypicals is thought to underlie their greater propensity
for metabolic side effects (Meltzer and Huang, 2008;
Miller, 2012). Moreover, the rare but potentially life-
threatening reduction in granule-containing white blood
cells, known as agranulocytosis, is a well-documented
side effect associated with clozapine (clozapine-induced
agranulocytosis; CIA). Indeed, despite it having the
greatest effect size of all APDs in reducing schizophrenia
symptoms (Davis et al., 2003) and being the most
effective APD for non-refractory schizophrenia

Address for correspondence: M. J. Cairns, School of Biomedical Sciences
and Pharmacy, The University of Newcastle, University Drive, Callaghan,
NSW 2308, Australia.
Tel.: 61-2-4921-8670 Fax: 61-2-4921-7903
Email: murray.cairns@newcastle.edu.au

International Journal of Neuropsychopharmacology (2014), 17, 929–943. © CINP 2014
doi:10.1017/S1461145713001752

ARTICLE



(Woerner et al., 2003; Essali et al., 2009; Leucht et al.,
2009), clozapine is generally not the first line choice
given the risk of CIA (Taylor et al., 2003; Flanagan
and Dunk, 2008). However, not all patients using
APDs will develop all these side effects, suggesting
underlying genetic susceptibility in certain individuals
and variable biological mechanisms through which they
occur.

Whole genome expression analysis in rodent brain
after APD exposure revealed altered expression of genes
involved in synaptic plasticity and pre-synaptic function
potentially related to their therapeutic mechanism of ac-
tion (MacDonald et al., 2005; Le-Niculescu et al., 2007;
Duncan et al., 2008; Fatemi et al., 2012; Rizig et al.,
2012). Additionally, biological pathways unrelated to
neurotransmission were altered in rodent studies
(Thomas et al., 2003; Mehler-Wex et al., 2006; Sondhi
et al., 2006) and in human CNS cell lines (Ferno et al.,
2005) such as lipid metabolism, which could be involved
in metabolic side effects of APDs. Similarly, microRNA
(miRNA), critical post-transcriptional regulators of gene
expression, may be novel targets for APDs, because
they may be involved in processes in the brain that are
relevant to APD activity (Dinan, 2010). In addition,
miRNA expression is altered in the brain (Perkins et al.,
2007; Beveridge et al., 2008, 2010; Santarelli et al.,
2011), olfactory neuroepithelium (Mor et al., 2013) and
peripheral blood mononuclear cells (PBMCs) (Gardiner
et al., 2011; Lai et al., 2011) of patients with schizophrenia
and miRNAmay regulate the expression of schizophrenia-
associated genes and pathways (Beveridge and Cairns,
2012; Wright et al., 2013). Recently we observed differen-
tial miRNA expression in mouse brain upon APD
exposure and that these miRNA target genes involved
in metabolic pathways (Santarelli et al., 2013).

In view of the possibility that genetic and environmen-
tal risk factors for schizophrenia also cause changes
in peripheral tissue, we investigated gene and miRNA
expression in PBMCs in a large cohort of participants
with schizophrenia and non-psychiatric controls
(Gardiner et al., 2011, 2013). These participants self-
reported the use of APDs and as such, we were unable
to definitively attribute the differential expression pat-
terns solely to the disorder and exclude the possibility
that APDs contributed to the molecular profiles.
Therefore to increase our understanding of the complex
activity of APDs, the evolution of their side effects and
differentiate them from the schizophrenia-associated
changes, we investigated the influence of the typical
APDs chlorpromazine and haloperidol and the atypical
clozapine on mRNA and miRNA expression in a
T-lymphocyte cell line. Since the acute effects of APDs
generally stabilize within 1 wk and therapeutic benefit
is achieved within 2wk compared to chronic treatment
(Kapur et al., 2005; Agid et al., 2006; Li et al., 2007;
Raedler et al., 2007; Kinon et al., 2010), we examined
expression changes over 15 d of APD exposure.

Methods

Cell culture and APD treatment

JM-Jurkat T-lymphocyte cells (Schneider et al., 1977)
were cultured in a humidified, 5% CO2 environment in
RPMI 1640 (Hyclone, Thermoscientific) supplemented
with 10% fetal calf serum and 2mM L-glutamine. The
APDs chlorpromazine, haloperidol and clozapine
(Sigma-Aldrich, Australia) were dissolved in ethanol
(or nuclease-free water in the case of chlorpromazine),
filtered with a 0.2 μM syringe filter (Millex GP, Merck
Millipore, Australia) and added to culture media to
final concentrations reflective of therapeutic/clinical
concentrations during typical treatment regimes with
the lowest toxicity: clozapine (400 ng/ml or 1.2 μmol/l),
haloperidol (10 ng/ml or 26.6 nmol/l), chlorpromazine
(500 ng/ml or 1.6 μmol/l) (Heiser et al., 2007; Mauri
et al., 2007; Weidenhofer et al., 2009; Jain et al., 2011;
Chen et al., 2012). Cells were seeded at 5×105 cells/ml in
T75 flasks and cultured to 70% confluence prior to treat-
ment, in triplicate, with drug-supplemented media (or
an equivalent volume of ethanol as a baseline control).
Every 3 d, cells were re-suspended to 5×105 cells/ml in
fresh drug-supplemented media while excess cells were
washed in 5ml warm PBS and harvested for RNA
extraction.

RNA extraction and purification

RNA extraction using Trizol (Sigma-Aldrich, Australia)
and assessment of total RNA quality using an Agilent
2100 bioanalyzer and the RNA 6000 Nano kit (Agilent,
Australia) was conducted as previously described
(Beveridge et al., 2013). The mean RNA integrity number
(RIN) was 9.8 and samples with RIN >6.9 were utilized
for microarray and quantitative real-time polymerase
chain reaction (Q-PCR) analysis.

Gene expression analysis

Total RNA was purified using the RNeasy minikit
(Australia) according to the manufacturer’s instructions.
Each sample was prepared and hybridized to Illumina
HT_12_v4 beadchips as previously described (Gardiner
et al., 2013).

Quality control, background subtraction and
quantile normalization were performed in GenomeStudio
V3 (USA) according to the manufacturer’s guidelines.
Expressed genes were determined with respect to nega-
tive control probes to provide a mean detection p value,
calculated across technical replicates. Only genes
expressed above this threshold (p<0.01) were included
for differential expression analysis. Unsupervised hier-
archical clustering (Cluster 3.0, Stanford University,
USA (Eisen et al., 1998), visualized in Java Treeview
V.1.1.1 (Saldanha, 2004)) identified two clusters com-
posed mainly of samples collected throughout the first
week (<7 d) termed ‘acute’ and second week (>7 but
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<15 d) termed ‘subacute’, respectively). Gene expression
data were loaded into GeneSpring v11 (Agilent,
Australia), median centered to the median of all genes
and baseline transformed. A 2-class differential ex-
pression analysis (grouped by APD type and duration
of exposure, i.e. ‘acute’ and ‘subacute’ averaged over
replicates, relative to respective controls) was conducted:
an unpaired t test with unequal variances (Welch’s t test)
with correction for multiple testing (Benjamini–Hochberg
false discovery rate (FDR)). Following filtering of
genes with poorly annotated/discontinued Entrez gene
records, lists of differentially expressed genes (DEGs)
were compiled (1.5 fold up or down-regulation, corrected
p<0.001) (Supplementary Tables S1–6).

miRNA expression analysis

1μg of total RNA was amplified, labeled and hybridized
to miRNA microarrays (Illumina miRNA sentrix array)
as described previously (Santarelli et al., 2011). Quality
control, background subtraction and normalization were
conducted on the miRNA expression data as described
above. Differential expression analysis was performed
on expressed miRNA (mean detection p<0.05) using the
significance analysis of microarrays statistical analysis
program (SAM; full academic version 2.23, http://
www-stat.stanford.edu/~tibs/SAM/) (Tusher et al., 2001).
An unpaired 2-class comparison (as described above for
the genes) of un-logged expression values was performed
(Wilcoxon T-statistic) with 5000 permutations of the data
(FDR=0) as described (Beveridge et al., 2010; Santarelli
et al., 2011).

Quantitative real-time PCR (Q-PCR)

Q-PCR was used to validate differential mRNA and
miRNA expression observed on the microarrays with
efficiency correction and the relative quantitation method
as previously described (Santarelli et al., 2011, 2013).
Primers for gene expression validation of five genes cho-
sen for their consistent change in expression in the same
direction after acute and subacute exposure to both
haloperidol and clozapine, as well as another two genes
altered after acute treatment with both haloperidol and
clozapine, were designed in Oligo Explorer V1.5 (USA)
such that the forward primer amplified across an
exon-exon junction and the reverse primer resided within
the same exon detected by the microarray probe.
Similarly, primers for miRNA were designed based on
their miRBase mature miRNA sequence (www.mirbase.
org) with a non-specific sequence added to the reverse
primer and, where required, locked nucleic acids added
to the forward primer for increased stability as described
previously (Santarelli et al., 2011). Primer sequences are
listed in Supplementary Table S7. After efficiency correc-
tion, relative expression was determined with respect to
the most stably expressed reference genes, GUSB and
HMBS (genes) and small nucleolar RNAs U44 and U49

(miRNA), as determined by geNorm analysis
(Vandesompele et al., 2002). A ratio of relative expression
(APD/control) was calculated and the significance of
differential expression determined using an unpaired
student’s one tailed t-test (outliers >3 standard deviations
from the mean were excluded).

Functional annotation of differentially expressed genes

DEGs and corresponding fold change, were uploaded
to Ingenuity Pathway Analysis (IPA) knowledge base
v6.3 (Ingenuity Systems, USA, www.ingenuity.com) for
functional annotation. IPA summarizes functional anno-
tation terms into top Biological Functions (divided into
3 major categories: Disease and Disorders, Molecular
and Cellular Functions and Physiological System
Development and Function) and Canonical Pathways
with which DEGs are associated. A Fisher’s exact
p value is calculated representing the probability that
these genes are associated with a particular function or
pathway by chance alone, with correction for multiple
testing (Benjamini-Hochberg). For the Canonical
Pathways this is expressed as -log(p-value) (>1.3 is
equivalent to p<0.05). A ratio of the number of DEGs
involved in the pathway divided by the total number of
genes in that pathway is also calculated as an indicator
of enrichment. In some instances, an activation z-score
is calculated, providing a prediction of the overall effect
of dysregulated expression of groups of genes in a
given pathway/annotation term, i.e. activation (52) or
inhibition (4−2), and is based upon sources in the
Ingenuity Knowledge Base and the direction of change
in the expression of genes within the pathway.

mRNA–miRNA interactions

Potential regulatory relationships between mRNA and
miRNA expression levels were investigated in IPA by
cross-referencing mRNA and miRNA that are differen-
tially expressed after the same treatment, highlighting
predicted mRNA:miRNA pairs (where a miRNA contains
a seed region that is predicted to bind the 3′-UTR of its
target mRNA).

Results

Genome-wide gene and miRNA expression was investi-
gated in JM-Jurkat T-lymphocytes after a 7–15 d exposure
to the APDs chlorpromazine, haloperidol and clozapine.

Differential gene expression

JM-Jurkat T-lymphocytes expressed 11520 genes (24.4%
of the total number of transcripts on the array).
A 2-class differential expression analysis was performed,
identifying genes that were considered significantly up
or down-regulated (1.55fold change 4−1.5) following
acute and subacute APD exposure compared to
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respective controls (Benjamini-Hochberg corrected
p<0.001) (Fig. 1 and Table 1). DEGs in each experimental
group are listed in Supplementary Tables S1–6.

Seven differentially expressed mRNA were selected
for validation by Q-PCR (Fig. 2 and Table 2). With one
exception, the direction of change in expression detected
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Fig. 1. Volcano plots of differentially expressed genes in Jurkat T-lymphocytes after antipsychotic exposure. Log2 fold change in
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by Q-PCR was consistent with the microarray. B-cell
CLL/lymphoma 2 (BCL2) was down-regulated after acute
haloperidol exposure. Protein kinase interferon-inducible

double-stranded RNA dependent activator (PRKRA) and
programmed cell death 10 (PDCD10) were up-regulated
after subacute haloperidol and clozapine. NAD(P)H

Table 1. Summary of differentially expressed genes after antipsychotic drugs (APD) exposure (microarray)

Experimental group Differentially expressed genes (>1.5 fold difference
treated/control, FDR (false discovery rate) p<0.001)

Duration of exposure Treatment

Acute Up-regulated Down-regulated Total
Chlorpromazine 16 2 18
Clozapine 339 196 535
Haloperidol 361 126 487

Subacute Chlorpromazine 0 1 1
Clozapine 237 134 371
Haloperidol 667 311 978
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Fig. 2. Quantitative real-time polymerase chain reaction (Q-PCR) validation of differential gene expression after antipsychotic
exposure. NQO1, BCL2, BCL2L1, PPT1, PRDX6, PRKRA and PDCD10. Bars represent mean fold change in expression
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dehydrogenase, quinone 1 (NQO1) was significantly
down-regulated after acute haloperidol in contrast
to the up-regulation shown by the microarray. Down-
regulation of BCL2-like 1 (BCL2L1) after acute haloperidol
was borderline non-significant by Q-PCR (p=0.05).

Differential miRNA expression and mRNA:miRNA
integration

A total of 247 mature miRNA were expressed, which
is 29% of all annotated/validated miRNA transcripts pres-
ent on the array. Differential expression analysis revealed
the significantly altered expression of 8 miRNA after
APD exposure compared to controls (Table 3). After
acute APD exposure the following was observed:
up-regulation of miR-942, miR-362-5p and miR-421
(chlorpromazine); down-regulation of miR-17-3p

(clozapine); down-regulation of miR-200c-3p, miR-28-5p
and miR-624-5p (haloperidol). After subacute APD ex-
posure, miR-21-5p was up-regulated (clozapine).

The expression of a selection of these miRNA was
also analyzed by Q-PCR (Fig. 3 and Table 4).
miR-200c-3p and miR-28-5p were confirmed to be signifi-
cantly down-regulated in haloperidol-treated JM-Jurkat
cells compared to controls (one tailed t-test: −2.46 fold,
p=0.026; −3.73 fold, p=0.014 respectively). miR-421 and
miR-17-3p showed non-significant trends in the same
direction as the microarray (1.31 fold up-regulation,
p=0.114 and −1.21 fold down-regulation, p=0.214) while
miR-21-5p showed no change compared to controls.

Differentially expressed mRNA and miRNA were
cross referenced for the following experimental groups:
chlorpromazine acute, clozapine acute and subacute,
haloperidol acute. Considering the current model in

Table 2. Quantitative real-time polymerase chain reaction (Q-PCR) gene expression summary of fold changes and p values

Acute haloperidol Acute clozapine Subacute haloperidol Subacute clozapine

NQO1 Fold change 0.62 1.56
p-value 0.023 0.068

BCL2 Fold change 0.52 0.91
p-value 0.006 0.303

BCL2L1 Fold change 0.30 0.47 1.61 1.07
p-value 0.051 0.088 0.138 0.414

PPT1 Fold change 0.59 0.84 1.85 1.59
p-value 0.068 0.259 0.095 0.178

PRDX6 Fold change 0.68 1.33 1.57 1.30
p-value 0.182 0.173 0.063 0.198

PRKRA Fold change 0.60 1.24 3.13 2.99
p-value 0.057 0.276 0.026 0.027

PDCD10 Fold change 0.68 1.07 1.83 1.91
p-value 0.093 0.404 0.036 0.006

P values in bold are significant (one-tailed student’s t-test p<0.05).

Table 3. Differentially expressed microRNA (miRNA) after antipsychotic drugs (APD) exposure (microarray)

Experimental group miRNA Fold change miRNA family Chromosome

Duration of exposure Treatment

Acute Chlorpromazine hsa-miR-942 1.25 miR-942 1p13.1
hsa-miR-362-5p 1.29 miR-362 Xp11.23
hsa-miR-421 1.41 miR-95 Xq13.2

Clozapine hsa-miR-17-3p −1.27 miR-17 13q31.3
Haloperidol hsa-miR-200c-3p −1.61 miR-8 12p13.31

hsa-miR-28-5p −1.3 miR-28 3q28
hsa-miR-624-5p −1.39 miR-624 14q12

Subacute Chlorpromazine None
Clozapine hsa-miR-21 1.29 miR-21 17q23.1
Haloperidol None

All miRNA listed were differentially expressed compared to controls at false discovery rate (FDR)=0. There were no miRNA
differentially expressed between acute and subacute controls.
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which miRNA typically act as inhibitors/destabilizers of
mRNA expression (post-transcriptional gene silencing),
up-regulation of a miRNA would be expected to lead to
silencing of their target mRNA (and vice versa), thus we
focused on inversely expressed pairs. We identified
73 unique mRNA:miRNA pairs after acute haloperidol
exposure, 58 of which were inversely expressed, i.e.
miR-200c-3p and miR-28-5p were predicted to target
40 and 18 genes respectively, that showed reciprocal up-
regulation. Similarly there were eight pairings between
miR-21-5p, which were up-regulated after subacute
treatment with clozapine, and mRNA differentially
expressed in the same experimental group. No mRNA:
miRNA pairs were identified after acute exposure to
chlorpromazine or clozapine. The lists of mRNA:
miRNA pairs for acute haloperidol-exposed cells and

subacute clozapine-exposed cells are listed in
Supplementary Table S13. Functional annotation of all
73 mRNA:miRNA pairs and the 58 inversely expressed
pairs for acute haloperidol-exposed cells revealed top
Molecular and Cellular Functions such as ‘Carbohydrate
metabolism’, ‘Lipid metabolism’ and ‘Small molecule bio-
chemistry’ as well as ‘Cell death and survival’ and many
processes related to development (Supplementary
Table S14).

Functional annotation of differentially expressed genes

A stringent inter-treatment comparison and functional
annotation was performed on genes differentially
expressed in response to multiple APDs and/or in re-
sponse to both acute and subacute APD exposure, since

Table 4. Differential microRNA (miRNA) expression (microarray and quantitative real-time polymerase chain reaction (Q-PCR)

miR-421
(acute –
chlorpromazine)

miR-17-3p
(acute –
clozapine)

miR-200c-3p
(acute –
haloperidol)

miR-28-5p
(acute –
haloperidol)

miR-21-5p
(subacute –
clozapine)

Microarraya Fold
change

1.41 −1.27 −1.61 −1.30 1.29

Q-PCR Fold
change

1.31 −1.21 −2.46 −3.73 −1.06

P value 0.114 0.214 0.026 0.014 0.434

Values in bold are significant: aFalse discovery rate (FDR)=0 in all instances; Q-PCR student’s one-tailed t-test, p<0.05.
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Table 5. Top ranked functional categories of genes commonly differentially expressed in Jurkat T-lymphocytes after antipsychotic drugs
(APD) exposure

Functional category Corrected p value Genes

Haloperidol (acute & subacute) (n=242)
Disease & Disorders Developmental Disorder 7.61E-04 − 4.47E-02 23

Hereditary Disorder 7.61E-04 − 4.47E-02 32
Metabolic Disease 7.61E-04 − 4.47E-02 11
Renal & Urological Disease 7.61E-04 − 2.26E-02 4
Neurological Disease 1.87E-03 − 4.01E-02 34

Molecular & Cellular Functions RNA Post-transcriptional Modification 2.33E-05 − 3.37E-02 14
Cell Cycle 3.81E-04 − 4.88E-02 18
Carbohydrate Metabolism 1.87E-03 − 3.37E-02 8
Lipid Metabolism 1.87E-03 − 4.79E-02 13
Small Molecule Biochemistry 1.87E-03 − 4.79E-02 18

Physiological System
Development & Function

Organismal Development 2.38E-02 − 4.83E-02 24
Tumor Morphology 5.45E-03 − 4.47E-02 8
Tissue Morphology 6.62E-03 − 4.55E-02 13
Embryonic Development 7.88E-03 − 4.83E-02 26
Nervous System Development & Function 7.88E-03 − 4.83E-02 7

Clozapine (acute & subacute) (n=116)
Disease & Disorders Cancer 8.66E-04 − 4.41E-02 18

Hematological Disease 8.66E-04 − 3.35E-02 4
Neurological Disease 1.68E-03 − 4.44E-02 12
Organismal Injury & Abnormalities 1.68E-03 − 3.35E-02 3
Cardiovascular Disease 5.66E-03 − 5.66E-03 1

Molecular & Cellular Functions Carbohydrate Metabolism 3.13E-04 − 3.35E-02 5
Nucleic Acid Metabolism 3.13E-04 − 4.44E-02 9
Small Molecule Biochemistry 3.13E-04 − 4.98E-02 13
RNA Post-transcriptional Modification 4.14E-04 − 1.69E-02 4
Post-translational Modification 4.14E-04 − 3.89E-02 13

Physiological System
Development & Function

Organ Morphology 1.363−03 − 4.26E-02 7
Nervous System Development & Function 2.01E-03 − 4.44E-02 7
Emrbyonic Development 5.66E-03 − 4.99E-02 8
Hematopoiesis 5.66E-03 − 4.44E-02 2
Humoral Immune Response 5.66E-03 − 3.89E-02 1

Haloperidol & clozapine (acute & subacute) (n=68)
Disease & Disorders Neurological Disease 6.52E-04 − 4.81E-02 9

Organismal Injury & Abnormalities 6.52E-04 − 3.46E-02 3
Cancer 3.51E-03 − 4.47E-02 4
Cardiovascular Disease 3.51E-03 − 3.51E-03 1
Connective Tissue Disorders 3.51E-03 − 3.36E-02 5

Molecular & Cellular Functions RNA Post-transcriptional Modification 4.29E-04 − 1.05E-02 3
DNA Replication, Recombination & Repair 5.78E-04 − 3.29E-02 9
Cellular Development 7.81E-04 − 3.8E-02 4
Post-Translational Modification 1.34E-03 − 1.88E-02 6
Free Radical Scavenging 2.92E-03 − 8.22E-03 3

Physiological System
Development & Function

Nervous System Development & Function 7.81E-04 − 4.81E-02 7
Organ Morphology 3.3E-03 − 5E-02 8
Embryonic Development 3.51E-03 − 5E-02 7
Hematopoiesis 3.51E-03 − 3.46E-02 1
Humoral Immune Response 3.51E-03 − 2.43E-02 1

Haloperidol & clozapine (acute and/or subacute) (n=377)
Disease & Disorders Cancer 8.9E-04 − 3.83E-02 64

Connective Tissue Disorders 1.76E-03 − 3.44E-02 4
Developmental Disorder 1.76E-03 − 3.83E-02 21
Infectious Disease 4.21E-03 − 2.9E-02 29
Gastrointestinal Disease 5.61E-03 − 3.44E-02 45
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they are more robustly altered and less likely to be false
positives, i.e. true targets of the APDs (compared to
those only altered by a single treatment/time-point
which tend to generate a higher false negative rate)
(Supplementary Fig. S1, Supplementary Tables S8 and
S9). Of the 18 genes altered after acute chlorpromazine,
10 were also altered (up-regulated in all instances) by
acute clozapine and haloperidol. Subacute treatment
with chlorpromazine or acute clozapine resulted in
down-regulation of fibulin 2 (FBLN2). A greater overlap
was observed between clozapine and haloperidol with
68 genes altered in response to acute and subacute
exposure. To identify processes and pathways unique to
clozapine and haloperidol exposure and commonly
dysregulated by both haloperidol and clozapine, the fol-
lowing four experimental groups (treatment-timepoints)
were submitted to IPA for functional annotation
(note that in all cases where a gene was altered by
both drugs, they were altered in the same direction by a
similar magnitude): (1) Clozapine acute and subacute
(n=116); (2) Haloperidol acute and subacute (n=242);
(3) Clozapine and haloperidol acute AND subacute
(n=68) and (4) Clozapine and haloperidol acute AND/
OR subacute (n=377).

The top five biological functions under the categories
‘diseases and disorders’, ‘molecular and cellular func-
tions’ and ‘physiological system development and func-
tion’ are summarized for the four experimental groups
in Table 5. Interestingly, in Jurkat T-lymphocytes (a non-
neuronal tissue), genes with canonical functions within
the brain were among those altered by APDs: the top
Disease/Disorder for genes in experimental group 3
(genes altered by both haloperidol and clozapine after
both acute and subacute exposure) was ‘Neurological
disease’, which also features among the top five for the
haloperidol and clozapine-specific gene lists (Table 5
and Supplementary Table S10). Moreover, ‘Nervous
system development and function’ featured in the top
five terms under the category ‘Physiological system
development and function’ for all four experimental
groups (Table 5).

Functional annotation also revealed other processes/
pathways with potential relevance to APD-induced
side effects. For genes differentially expressed after
acute and subacute haloperidol exposure, ‘Metabolic
disease’ was among the top five diseases and disorders.
In the top five molecular and cellular functions were
‘Carbohydrate metabolism’ and ‘Lipid metabolism’. For
haloperidol, the functional annotation term
‘Accumulation of lipid’ carried a z-score of 1.715 (trend
for an increased lipid accumulation). Moreover,
‘Accumulation of lipid’, ‘Accumulation of fatty acid’
and ‘Oxidation of fatty acid’ were terms represented
in the significant biological functions containing
altered genes from the four experimental groups
(Supplementary Table S11). The canonical pathways
analysis also suggested that genes involved in lipid
metabolism are altered by APDs: the most significant
canonical pathway for experimental group 4 (acute
AND/OR subacute haloperidol and clozapine) was
‘Fatty acid β-oxidation I’, which is in accordance with
APD-induced weight gain (Supplementary Table S12).
Furthermore, the pathway ‘Mitochondrial dysfunction’
and other biological functions including ‘Free radical
scavenging’, ‘Permeability of mitochondrial membrane’,
‘Quantity of hydrogen peroxide’, ‘Quantity of NADPH’
and ‘Quantity of reactive oxygen species’ featured
among the four experimental groups suggesting dysregu-
lation of genes related to oxidative/cellular stress
(Supplementary Tables S11 and S12).

Functional annotation terms related to T-lymphocyte
function and development were among those represented
by DEGs that were commonly dysregulated by
clozapine and haloperidol. ‘Cell cycle progression of
T-lymphocytes’, ‘Arrest in cell cycle progression of
T-lymphocytes’ and ‘Interphase of T-lymphocytes’ were
identified for experimental group 4 (clozapine and halo-
peridol acute AND/OR subacute). Similarly, for genes
differentially expressed after haloperidol exposure,
‘Cell cycle progression of T-lymphocytes’, ‘Lack of
CD8+ T-lymphocyte’ and ‘Differentiation of CD4+
T-lymphocytes’ were observed while ‘Quantity of

Table 5 (cont.)

Functional category Corrected p value Genes

Molecular & Cellular Functions Post-translational Modification 9.56E-05 − 4.9E-02 37
Cell Morphology 3E-04 − 3.83E-02 20
Cellular Function & Maintenance 3E-04 − 3.83E-02 12
DNA Replication, Recombination & Repair 3.41E-04 − 3.83E-02 28
Cell-to-cell Signaling & Interaction 8.9E-04 − 3.44E-02 5

Physiological System
Development & Function

Tumor Morphology 8.9E-04 − 3.44E-02 2
Nervous System Development & Function 1.76E-03 − 3.44E-02 6
Cardiovascular System Development & Function 2.9E-03 − 3.83E-02 13
Hematological System Development & Function 2.9E-03 − 4.23E-02 9
Organismal Development 2.9E-03 − 3.44E-02 17
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memory T-lymphocytes’ and ‘I-kappaB kinase/
NF-kappaB cascade’ were identified for
clozapine-exposed cells (Supplementary Table 11).
Functional annotation terms related to infection, in par-
ticular with human immunodeficiency virus (HIV,
which targets T-helper cells), featured a z-score >2, sug-
gesting an overall increase in the activity of this pathway.

Discussion

Although APDs are thought to achieve their therapeutic
effects via molecular targets in the brain, they display
broad receptor binding profiles and may elicit ‘off-target’
effects in the brain and periphery (Canfran-Duque et al.,
2013). To gain further insight into the molecular effects
of APDs at the transcriptional level in peripheral
cells, we examined both gene and miRNA expression
in Jurkat T-lymphocytes following APD exposure.
Functional annotation of the DEGs and miRNA suggests
these agents influence pathways associated with oxidat-
ive stress and cellular metabolism which could affect
T-cell biology, and may also provide insight into the mol-
ecular effects of APDs in other cell types, with several
neurological diseases relevant to APD-induced EPS also
being implicated.

APD-induced differential expression and mRNA:
miRNA integration

Genes altered by multiple APDs and/or timepoints are
more likely to be true molecular targets of APD treat-
ment. There were 68 genes differentially expressed after
acute and subacute exposure to both haloperidol and clo-
zapine (all in the same direction with similar magnitude
of fold change). The greater overlap between haloperidol
and clozapine (as compared to that between chlorproma-
zine and haloperidol, both typical APDs) was somewhat
surprising since they have distinct neurotransmitter
receptor binding affinities (Nielsen et al., 2011). Neverthe-
less, this suggests possible co-regulatory influences of
these APDs on the expression of these genes and simila-
rities in their mechanisms of action. In this study we con-
sidered the potential of miRNA to mediate some of the
APD-related changes in expression and identified eight
miRNA associated with APD exposure, including
miR-17-3p. This miRNA, down-regulated after acute
clozapine exposure was previously shown to be down-
regulated during neural differentiation (Beveridge et al.,
2009) and in the serum of patients with schizophrenia
(Shi et al., 2012), while up-regulated in post-mortem
schizophrenia brain (Santarelli et al., 2011; Wong et al.,
2013). Down-regulation of miR-200c-3p and miR-28-5p
after acute haloperidol exposure was also consistent
with their expression profile in PBMCs from patients
with schizophrenia (Gardiner et al., 2011), suggesting
these miRNA could be altered in patients through APD
treatment.

To garner more information about the interaction be-
tween APD–miRNA and their target genes we identified
73 haloperidol-associated mRNA:miRNA pairs for
miR-200c-3p and miR-28-5p, 58 of which showed inverse
expression. Functional annotation and pathways analysis
of the altered mRNA:miRNA pairs suggested involve-
ment in a wide variety of metabolic signaling pathways,
including ‘Carbohydrate metabolism’, ‘Lipid metabolism’
and ‘Small molecule biochemistry’ consistent with pre-
vious reports associating miR-200c with adipogenesis
and obesity (Kennell et al., 2008; Chartoumpekis et al.,
2012).

APD impact on T-cell biology

T-lymphocytes express neurotransmitters and their
receptors (Cosentino et al., 2007; Chen et al., 2012) and
there is evidence that, in addition to their canonical
roles in neurotransmission, neurotransmitters affect
immune function (Levite, 2008). Moreover, APDs possess
immunomodulatory properties (Drzyzga et al., 2006;
Himmerich et al., 2011; Roge et al., 2012) which could
have implications for treatment of schizophrenia given
evidence suggesting an immune component in the dis-
order (Fillman et al., 2012; Xu et al., 2012; Gardiner
et al., 2013; Hwang et al., 2013). Thus we suspect that
APDs could alter the expression of miRNA and genes
associated with T-lymphocyte function, which may shed
light on the molecular mechanism(s) underlying
APD-induced immunological side effects. Investigation
of the biological processes and pathways featuring
genes that were commonly dysregulated by clozapine
and haloperidol revealed functional annotation terms
related to T-cell development including ‘Cell cycle pro-
gression of T-lymphocytes’. Moreover, functional anno-
tation terms related to infection were predicted to have
increased overall activity so it could be speculated that
APDs alter the expression of genes that render
T-lymphocytes more vulnerable to viral infection.

Biological terms and pathways including ‘Free radical
scavenging’, ‘Permeability of mitochondrial membrane’,
‘Quantity of hydrogen peroxide’, ‘Quantity of reactive
oxygen species’ and ‘Mitochondrial dysfunction’ suggest
that T-lymphocyte function may be affected by
APD-induced alterations in oxidative stress/antioxidant
defense, mitochondrial function and energy metabolism.
APD exposure altered the expression of glutaredoxin
family members GLRX, GLRX2 and GLRX3, which are
involved in the regulation of antioxidant defense and
maintenance of mitochondrial redox homeostasis
(Felberbaum-Corti et al., 2007; Sabens Liedhegner et al.,
2012; Stroher and Millar, 2012). GLRX was among the
inversely expressed mRNA targets of both miR-200c-3p
and miR-28-5p. The unique antioxidant peroxiredoxin 6
(PRDX6) was also up-regulated after APD exposure in
contrast to down-regulation in APD-treated rat frontal
cortex (Fatemi et al., 2012) but consistent with increased
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PRDX6 protein in post-mortem brain from medicated
schizophrenia patients (Martins-de-Souza et al., 2010).
Anti-apoptotic BCL2 and BCL2L1, associated with cell
cycle regulation, survival and mitochondrial membrane
permeability (Ogilvy et al., 1999; Akgul et al., 2001;
Rolland and Conradt, 2010) were both down-regulated
after APD exposure, consistent with down-regulation of
BCL2L1 in rat frontal cortex in response to haloperidol
and clozapine (Fatemi et al., 2012). It is plausible that
APD-induced down-regulation of these genes confers
increased vulnerability of T-lymphocytes to oxidative
stress and pro-apoptotic stimuli related to CIA.
Clozapine itself is apparently not directly toxic to neutro-
phils or their progenitors at therapeutic concentrations
(Williams et al., 1997, 2000; Gardner et al., 1998).
However, bioactivation/oxidation of clozapine in neutro-
phils produces reactive and unstable clozapine metabo-
lites which induce toxic oxidative stress leading to
neutrophil apoptosis (Williams et al., 2000; Fehsel et al.,
2005; Husain et al., 2006) and may be cytotoxic to bone
marrow stroma (Pereira and Dean, 2006; Lahdelma
et al., 2010) potentially leading to accelerated neutrophil
or myelocyte precursor apoptosis (Flanagan and Dunk,
2008; Iverson et al., 2010; Nooijen et al., 2011). In support
of this, the functional term ‘Apoptosis of bone marrow
cell lines’ was associated with clozapine-exposed cells.

Metabolic and neurological pathways

The APD-associated changes in genes associated with oxi-
dative stress and mitochondrial function, altered here in
T-lymphocytes, may provide insight into the molecular
effects of APDs in other cellular contexts. Disruption of
these pathways in other cell types/tissues could underlie
the pathophysiology of diverse side effects. The current
findings could be relevant to APD-associated metabolic
side effects such as weight gain, metabolic syndrome,
dyslipidemia and insulin resistance (Newcomer, 2007;
Miljevic et al., 2010). The most significant canonical path-
way for genes dysregulated by ‘acute AND/OR subacute
haloperidol and clozapine’ was ‘Fatty acid β-oxidation I’
and the category ‘Lipid metabolism’ was among the
top five molecular and cellular functions for
haloperidol-exposed cells. This is consistent with our pre-
vious study in which differentially expressed mRNA:
miRNA in mouse whole brain following exposure to
olanzapine and clozapine were associated with altered
lipid metabolism (Santarelli et al., 2013). Moreover,
others report differential expression of genes associated
with fatty acid biosynthesis and lipid metabolism
after APD exposure in cell culture (Ferno et al., 2005;
Polymeropoulos et al., 2009) and rodent brain (Thomas
et al., 2003; Duncan et al., 2008). Similarly, we observed
a number of terms and pathways associated with neural
development and function. ‘Neurological disease’ was
the top Disease/Disorder for genes altered by both
acute and subacute exposure to haloperidol and

clozapine and included several terms consistent with
APD-induced EPS including ‘Appendicular dystonia’,
‘Quadrupedal gait’, Huntington’s disease’ and
‘Movement disorder’. While APD-induced EPS and
movement disorders are principally thought to arise
through nigrostriatal dopaminergic receptor inhibition,
there is evidence that altered redox balance/oxidative
neurotoxic stress may also be involved (Andreassen and
Jorgensen, 2000; Lohr et al., 2003; Thelma et al., 2007;
Cho and Lee, 2012). The aforementioned glutaredoxin
family has been associated with neurodegenerative dis-
ease (Akterin et al., 2006; Diwakar et al., 2007; Saeed
et al., 2008). Similarly, APD-induced differential ex-
pression of BCL2 family members resulted in both neuro-
protective and neurotoxic effects in rat brains, as well as
in human neuronal cell lines (Lezoualc’h et al., 1996;
Post et al., 2002; Wei et al., 2003; Fatemi et al., 2012).
We also observed up-regulation of the stress-responsive
gene PRKRA, which controls the apoptotic PKR pathway,
after clozapine and haloperidol exposure (Patel et al.,
2000; Donze et al., 2004; Taylor et al., 2005; Lee et al.,
2007; Singh and Patel, 2012). Abnormalities in PRKRA
have been associated with deficits in nervous system de-
velopment and neuromuscular function (Bennett et al.,
2008) as well as dystonia-parkinsonism (Camargos
et al., 2008; Seibler et al., 2008; Bragg et al., 2011).

Conclusion

While APDs have revolutionized the treatment of
psychotic and behavioral disorders, much of the fine
detail underlying the neuropsychopharmacology remains
to be determined, particularly in regards to side effects
in peripheral tissue. In this study we examined mRNA–
miRNA interactions in APD treated T-lymphocyte cul-
tures and revealed several pathways with significance
to T-cell function and CIA, such as cellular metabolism
and oxidative stress, which may also offer insight
into the molecular mechanisms that underlie APD-
induced metabolic and neurological side effects in other
cell types.
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